skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wager, Stefan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many areas, practitioners seek to use observational data to learn a treatment assignment policy that satisfies application‐specific constraints, such as budget, fairness, simplicity, or other functional form constraints. For example, policies may be restricted to take the form of decision trees based on a limited set of easily observable individual characteristics. We propose a new approach to this problem motivated by the theory of semiparametrically efficient estimation. Our method can be used to optimize either binary treatments or infinitesimal nudges to continuous treatments, and can leverage observational data where causal effects are identified using a variety of strategies, including selection on observables and instrumental variables. Given a doubly robust estimator of the causal effect of assigning everyone to treatment, we develop an algorithm for choosing whom to treat, and establish strong guarantees for the asymptotic utilitarian regret of the resulting policy. 
    more » « less
  2. Adaptive experimental designs can dramatically improve efficiency in randomized trials. But with adaptively collected data, common estimators based on sample means and inverse propensity-weighted means can be biased or heavy-tailed. This poses statistical challenges, in particular when the experimenter would like to test hypotheses about parameters that were not targeted by the data-collection mechanism. In this paper, we present a class of test statistics that can handle these challenges. Our approach is to adaptively reweight the terms of an augmented inverse propensity-weighting estimator to control the contribution of each term to the estimator’s variance. This scheme reduces overall variance and yields an asymptotically normal test statistic. We validate the accuracy of the resulting estimates and their CIs in numerical experiments and show that our methods compare favorably to existing alternatives in terms of mean squared error, coverage, and CI size. 
    more » « less
  3. Discussion of "Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects" 
    more » « less